@inproceedings{628,
abstract = {We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. The motivation is that several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., Quick-Sort), or completely ineffective (e.g., Coupon-Collector). Since the main focus of expected-runtime analysis is to obtain efficient bounds, we consider bounds that are either logarithmic, linear or almost-linear (O(log n), O(n), O(n · log n), respectively, where n represents the input size). Our main contribution is an efficient (simple linear-time algorithm) sound approach for deriving such expected-runtime bounds for the analysis of recurrence relations induced by randomized algorithms. The experimental results show that our approach can efficiently derive asymptotically optimal expected-runtime bounds for recurrences of classical randomized algorithms, including Randomized-Search, Quick-Sort, Quick-Select, Coupon-Collector, where the worst-case bounds are either inefficient (such as linear as compared to logarithmic expected-runtime complexity, or quadratic as compared to linear or almost-linear expected-runtime complexity), or ineffective.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Murhekar, Aniket},
editor = {Majumdar, Rupak and Kunčak, Viktor},
isbn = {978-331963386-2},
location = {Heidelberg, Germany},
pages = {118 -- 139},
publisher = {Springer},
title = {{Automated recurrence analysis for almost linear expected runtime bounds}},
doi = {10.1007/978-3-319-63387-9_6},
volume = {10426},
year = {2017},
}