Earlier Version

Flexible learning-free segmentation and reconstruction of neural volumes

A. Shabazi, J. Kinnison, R. Vescovi, M. Du, R. Hill, M.A. Jösch, M. Takeno, H. Zeng, N. Da Costa, J. Grutzendler, N. Kasthuri, W. Scheirer, Scientific Reports 8 (2018) 14247.

Download
OA 4.14 MB

Journal Article | Published | English
Author
; ; ; ; ; ; ; ; ; ; ;
All
Department
Abstract
Imaging is a dominant strategy for data collection in neuroscience, yielding stacks of images that often scale to gigabytes of data for a single experiment. Machine learning algorithms from computer vision can serve as a pair of virtual eyes that tirelessly processes these images, automatically detecting and identifying microstructures. Unlike learning methods, our Flexible Learning-free Reconstruction of Imaged Neural volumes (FLoRIN) pipeline exploits structure-specific contextual clues and requires no training. This approach generalizes across different modalities, including serially-sectioned scanning electron microscopy (sSEM) of genetically labeled and contrast enhanced processes, spectral confocal reflectance (SCoRe) microscopy, and high-energy synchrotron X-ray microtomography (μCT) of large tissue volumes. We deploy the FLoRIN pipeline on newly published and novel mouse datasets, demonstrating the high biological fidelity of the pipeline’s reconstructions. FLoRIN reconstructions are of sufficient quality for preliminary biological study, for example examining the distribution and morphology of cells or extracting single axons from functional data. Compared to existing supervised learning methods, FLoRIN is one to two orders of magnitude faster and produces high-quality reconstructions that are tolerant to noise and artifacts, as is shown qualitatively and quantitatively.
Publishing Year
Date Published
2018-09-24
Journal Title
Scientific Reports
Acknowledgement
Equipment was generously donated by the NVIDIA Corporation, and made available by the National Science Foundation (NSF) through grant #CNS-1629914. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
Volume
8
Issue
1
Article Number
14247
IST-REx-ID

Cite this

Shabazi A, Kinnison J, Vescovi R, et al. Flexible learning-free segmentation and reconstruction of neural volumes. Scientific Reports. 2018;8(1):14247. doi:10.1038/s41598-018-32628-3
Shabazi, A., Kinnison, J., Vescovi, R., Du, M., Hill, R., Jösch, M. A., … Scheirer, W. (2018). Flexible learning-free segmentation and reconstruction of neural volumes. Scientific Reports, 8(1), 14247. https://doi.org/10.1038/s41598-018-32628-3
Shabazi, Ali, Jeffery Kinnison, Rafael Vescovi, Ming Du, Robert Hill, Maximilian A Jösch, Marc Takeno, et al. “Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes.” Scientific Reports 8, no. 1 (2018): 14247. https://doi.org/10.1038/s41598-018-32628-3.
A. Shabazi et al., “Flexible learning-free segmentation and reconstruction of neural volumes,” Scientific Reports, vol. 8, no. 1, p. 14247, 2018.
Shabazi A, Kinnison J, Vescovi R, Du M, Hill R, Jösch MA, Takeno M, Zeng H, Da Costa N, Grutzendler J, Kasthuri N, Scheirer W. 2018. Flexible learning-free segmentation and reconstruction of neural volumes. Scientific Reports. 8(1), 14247.
Shabazi, Ali, et al. “Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes.” Scientific Reports, vol. 8, no. 1, Nature Publishing Group, 2018, p. 14247, doi:10.1038/s41598-018-32628-3.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-17T12:22:24Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar