article
Correlated random matrices: Band rigidity and edge universality
published
yes
Johannes
Alt
author 36D3D8B6-F248-11E8-B48F-1D18A9856A87
László
Erdös
author 4DBD5372-F248-11E8-B48F-1D18A9856A870000-0001-5366-9603
Torben H
Krüger
author 3020C786-F248-11E8-B48F-1D18A9856A87
Dominik J
Schröder
author 408ED176-F248-11E8-B48F-1D18A9856A87
LaEr
department
Random matrices, universality and disordered quantum systems
project
We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
Project Euclid2020
eng
Annals of Probability
1804.07744
482963-1001
https://research-explorer.app.ist.ac.at/record/149 https://research-explorer.app.ist.ac.at/record/6179
Alt J, Erdös L, Krüger TH, Schröder DJ. 2020. Correlated random matrices: Band rigidity and edge universality. Annals of Probability. 48(2), 963–1001.
J. Alt, L. Erdös, T.H. Krüger, D.J. Schröder, Annals of Probability 48 (2020) 963–1001.
J. Alt, L. Erdös, T. H. Krüger, and D. J. Schröder, “Correlated random matrices: Band rigidity and edge universality,” <i>Annals of Probability</i>, vol. 48, no. 2, pp. 963–1001, 2020.
Alt, J., Erdös, L., Krüger, T. H., & Schröder, D. J. (2020). Correlated random matrices: Band rigidity and edge universality. <i>Annals of Probability</i>, <i>48</i>(2), 963–1001.
Alt, Johannes, et al. “Correlated Random Matrices: Band Rigidity and Edge Universality.” <i>Annals of Probability</i>, vol. 48, no. 2, Project Euclid, 2020, pp. 963–1001.
Alt J, Erdös L, Krüger TH, Schröder DJ. Correlated random matrices: Band rigidity and edge universality. <i>Annals of Probability</i>. 2020;48(2):963-1001.
Alt, Johannes, László Erdös, Torben H Krüger, and Dominik J Schröder. “Correlated Random Matrices: Band Rigidity and Edge Universality.” <i>Annals of Probability</i> 48, no. 2 (2020): 963–1001.
61842019-03-28T09:20:08Z2020-05-12T11:16:24Z