Correlated random matrices: Band rigidity and edge universality

J. Alt, L. Erdös, T.H. Krüger, D.J. Schröder, ArXiv:1804.07744 (n.d.).

Preprint | Submitted | English
Department
Abstract
We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
Publishing Year
Date Published
2018-04-20
Journal Title
arXiv:1804.07744
Page
26
IST-REx-ID

Cite this

Alt J, Erdös L, Krüger TH, Schröder DJ. Correlated random matrices: Band rigidity and edge universality. arXiv:180407744.
Alt, J., Erdös, L., Krüger, T. H., & Schröder, D. J. (n.d.). Correlated random matrices: Band rigidity and edge universality. ArXiv:1804.07744.
Alt, Johannes, László Erdös, Torben H Krüger, and Dominik J Schröder. “Correlated Random Matrices: Band Rigidity and Edge Universality.” ArXiv:1804.07744, n.d.
J. Alt, L. Erdös, T. H. Krüger, and D. J. Schröder, “Correlated random matrices: Band rigidity and edge universality,” arXiv:1804.07744. .
Alt J, Erdös L, Krüger TH, Schröder DJ. Correlated random matrices: Band rigidity and edge universality. arXiv:1804.07744.
Alt, Johannes, et al. “Correlated Random Matrices: Band Rigidity and Edge Universality.” ArXiv:1804.07744.

Link(s) to Main File(s)
Access Level
OA Open Access
Material in IST:
Dissertation containing IST record
Dissertation containing IST record

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1804.07744

Search this title in

Google Scholar