@article{6086,
abstract = {We show that linear analytic cocycles where all Lyapunov exponents are negative infinite are nilpotent. For such one-frequency cocycles we show that they can be analytically conjugated to an upper triangular cocycle or a Jordan normal form. As a consequence, an arbitrarily small analytic perturbation leads to distinct Lyapunov exponents. Moreover, in the one-frequency case where the th Lyapunov exponent is finite and the st negative infinite, we obtain a simple criterion for domination in which case there is a splitting into a nilpotent part and an invertible part.},
author = {Sadel, Christian and Xu, Disheng},
journal = {Ergodic Theory and Dynamical Systems},
number = {4},
pages = {1082--1098},
publisher = {Cambridge University Press},
title = {{Singular analytic linear cocycles with negative infinite Lyapunov exponents}},
doi = {10.1017/etds.2017.52},
volume = {39},
year = {2019},
}