@article{5857,
abstract = {A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is [Formula presented](n−1), and that this bound is best possible for infinitely many values of n.},
author = {Fulek, Radoslav and Pach, János},
issn = {0166218X},
journal = {Discrete Applied Mathematics},
number = {4},
pages = {266--231},
publisher = {Elsevier},
title = {{Thrackles: An improved upper bound}},
doi = {10.1016/j.dam.2018.12.025},
volume = {259},
year = {2019},
}