Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria

S. Wielgoss, T. Bergmiller, A.M. Bischofberger, A.R. Hall, Molecular Biology and Evolution 33 (2015) 770–782.

Download
OA 634.04 KB

Journal Article | Published | English
Author
; ; ;
Department
Abstract
Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.
Publishing Year
Date Published
2015-11-24
Journal Title
Molecular Biology and Evolution
Volume
33
Issue
3
Page
770-782
IST-REx-ID

Cite this

Wielgoss S, Bergmiller T, Bischofberger AM, Hall AR. Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria. Molecular Biology and Evolution. 2015;33(3):770-782. doi:10.1093/molbev/msv270
Wielgoss, S., Bergmiller, T., Bischofberger, A. M., & Hall, A. R. (2015). Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria. Molecular Biology and Evolution, 33(3), 770–782. https://doi.org/10.1093/molbev/msv270
Wielgoss, Sébastien, Tobias Bergmiller, Anna M. Bischofberger, and Alex R. Hall. “Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria.” Molecular Biology and Evolution 33, no. 3 (2015): 770–82. https://doi.org/10.1093/molbev/msv270.
S. Wielgoss, T. Bergmiller, A. M. Bischofberger, and A. R. Hall, “Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria,” Molecular Biology and Evolution, vol. 33, no. 3, pp. 770–782, 2015.
Wielgoss S, Bergmiller T, Bischofberger AM, Hall AR. 2015. Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria. Molecular Biology and Evolution. 33(3), 770–782.
Wielgoss, Sébastien, et al. “Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria.” Molecular Biology and Evolution, vol. 33, no. 3, Oxford University Press (OUP), 2015, pp. 770–82, doi:10.1093/molbev/msv270.
All files available under the following license(s):
Creative Commons License:
Creative Commons Attribution-NonCommercial (CC BY-NC 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-18T13:21:45Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar