{"month":"04","file":[{"file_id":"5548","checksum":"c608e66030a4bf51d2d99b451f539b99","file_name":"IST-2014-187-v1+1_main_full_tech.pdf","content_type":"application/pdf","access_level":"open_access","file_size":670031,"creator":"system","date_created":"2018-12-12T11:54:25Z","relation":"main_file","date_updated":"2020-07-14T12:46:50Z"}],"citation":{"chicago":"Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Improved Algorithms for Reachability and Shortest Path on Low Tree-Width Graphs. IST Austria, 2014. https://doi.org/10.15479/AT:IST-2014-187-v1-1.","ista":"Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2014. Improved algorithms for reachability and shortest path on low tree-width graphs, IST Austria, 34p.","apa":"Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2014). Improved algorithms for reachability and shortest path on low tree-width graphs. IST Austria. https://doi.org/10.15479/AT:IST-2014-187-v1-1","ieee":"K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, Improved algorithms for reachability and shortest path on low tree-width graphs. IST Austria, 2014.","ama":"Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. Improved Algorithms for Reachability and Shortest Path on Low Tree-Width Graphs. IST Austria; 2014. doi:10.15479/AT:IST-2014-187-v1-1","mla":"Chatterjee, Krishnendu, et al. Improved Algorithms for Reachability and Shortest Path on Low Tree-Width Graphs. IST Austria, 2014, doi:10.15479/AT:IST-2014-187-v1-1.","short":"K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, Improved Algorithms for Reachability and Shortest Path on Low Tree-Width Graphs, IST Austria, 2014."},"status":"public","has_accepted_license":"1","_id":"5419","date_published":"2014-04-14T00:00:00Z","date_created":"2018-12-12T11:39:13Z","alternative_title":["IST Austria Technical Report"],"language":[{"iso":"eng"}],"ddc":["000"],"oa":1,"oa_version":"Published Version","file_date_updated":"2020-07-14T12:46:50Z","year":"2014","publication_identifier":{"issn":["2664-1690"]},"page":"34","author":[{"last_name":"Chatterjee","first_name":"Krishnendu","id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-4561-241X","full_name":"Chatterjee, Krishnendu"},{"orcid":"0000-0003-4783-0389","full_name":"Ibsen-Jensen, Rasmus","id":"3B699956-F248-11E8-B48F-1D18A9856A87","first_name":"Rasmus","last_name":"Ibsen-Jensen"},{"full_name":"Pavlogiannis, Andreas","orcid":"0000-0002-8943-0722","last_name":"Pavlogiannis","id":"49704004-F248-11E8-B48F-1D18A9856A87","first_name":"Andreas"}],"day":"14","publisher":"IST Austria","pubrep_id":"187","abstract":[{"lang":"eng","text":"We consider the reachability and shortest path problems on low tree-width graphs, with n nodes, m edges, and tree-width t, on a standard RAM with wordsize W. We use O to hide polynomial factors of the inverse of the Ackermann function. Our main contributions are three fold:\r\n1. For reachability, we present an algorithm that requires O(n·t2·log(n/t)) preprocessing time, O(n·(t·log(n/t))/W) space, and O(t/W) time for pair queries and O((n·t)/W) time for single-source queries. Note that for constant t our algorithm uses O(n·logn) time for preprocessing; and O(n/W) time for single-source queries, which is faster than depth first search/breath first search (after the preprocessing).\r\n2. We present an algorithm for shortest path that requires O(n·t2) preprocessing time, O(n·t) space, and O(t2) time for pair queries and O(n·t) time single-source queries.\r\n3. We give a space versus query time trade-off algorithm for shortest path that, given any constant >0, requires O(n·t2) preprocessing time, O(n·t2) space, and O(n1−·t2) time for pair queries.\r\nOur algorithms improve all existing results, and use very simple data structures."}],"type":"technical_report","doi":"10.15479/AT:IST-2014-187-v1-1","publication_status":"published","title":"Improved algorithms for reachability and shortest path on low tree-width graphs","date_updated":"2021-01-12T08:02:03Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","department":[{"_id":"KrCh"}]}