Earlier Version

# Qualitative analysis of concurrent mean-payoff games

K. Chatterjee, R. Ibsen-Jensen, Qualitative Analysis of Concurrent Mean-Payoff Games, IST Austria, 2013.

Download

IST-2013-126-v1+1_soda_full.pdf
434.52 KB

*Technical Report*|

*Published*|

*English*

Department

Series Title

IST Austria Technical Report

Abstract

We consider concurrent games played by two-players on a finite state graph, where in every round the players simultaneously choose a move, and the current state along with the joint moves determine the successor state. We study the most fundamental objective for concurrent games, namely, mean-payoff or limit-average objective, where a reward is associated to every transition, and the goal of player 1 is to maximize the long-run average of the rewards, and the objective of player 2 is strictly the opposite (i.e., the games are zero-sum). The path constraint for player 1 could be qualitative, i.e., the mean-payoff is the maximal reward, or arbitrarily close to it; or quantitative, i.e., a given threshold between the minimal and maximal reward. We consider the computation of the almost-sure (resp. positive) winning sets, where player 1 can ensure that the path constraint is satisfied with probability 1 (resp. positive probability). Almost-sure winning with qualitative constraint exactly corresponds to the question whether there exists a strategy to ensure that the payoff is the maximal reward of the game. Our main results for qualitative path constraints are as follows: (1) we establish qualitative determinacy results that show for every state either player 1 has a strategy to ensure almost-sure (resp. positive) winning against all player-2 strategies or player 2 has a spoiling strategy to falsify almost-sure (resp. positive) winning against all player-1 strategies; (2) we present optimal strategy complexity results that precisely characterize the classes of strategies required for almost-sure and positive winning for both players; and (3) we present quadratic time algorithms to compute the almost-sure and the positive winning sets, matching the best known bound of the algorithms for much simpler problems (such as reachability objectives). For quantitative constraints we show that a polynomial time solution for the almost-sure or the positive winning set would imply a solution to a long-standing open problem (of solving the value problem of mean-payoff games) that is not known to be in polynomial time.

Publishing Year

Date Published

2013-07-03

Page

33

ISSN

IST-REx-ID

### Cite this

Chatterjee K, Ibsen-Jensen R.

*Qualitative Analysis of Concurrent Mean-Payoff Games*. IST Austria; 2013. doi:10.15479/AT:IST-2013-126-v1-1Chatterjee, K., & Ibsen-Jensen, R. (2013).

*Qualitative analysis of concurrent mean-payoff games*. IST Austria. https://doi.org/10.15479/AT:IST-2013-126-v1-1Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen.

*Qualitative Analysis of Concurrent Mean-Payoff Games*. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-126-v1-1.K. Chatterjee and R. Ibsen-Jensen,

*Qualitative analysis of concurrent mean-payoff games*. IST Austria, 2013.Chatterjee K, Ibsen-Jensen R. 2013. Qualitative analysis of concurrent mean-payoff games, IST Austria, 33p.

Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen.

*Qualitative Analysis of Concurrent Mean-Payoff Games*. IST Austria, 2013, doi:10.15479/AT:IST-2013-126-v1-1.**Main File(s)**

File Name

IST-2013-126-v1+1_soda_full.pdf
434.52 KB

Access Level

Open Access

Last Uploaded

2018-12-12T11:53:49Z