@article{521,
abstract = {Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.},
author = {Austin, Kyle and Virk, Ziga},
issn = {01668641},
journal = {Topology and its Applications},
pages = {45 -- 57},
publisher = {Elsevier},
title = {{Higson compactification and dimension raising}},
doi = {10.1016/j.topol.2016.10.005},
volume = {215},
year = {2017},
}