---
res:
bibo_abstract:
- Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y
induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful
in showing that the classical dimension raising theorems hold in large scale;
that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and
Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely
n-to-1 maps, which include the natural quotient maps via a finite group action,
and prove that they preserve the asymptotic dimension.@eng
bibo_authorlist:
- foaf_Person:
foaf_givenName: Kyle
foaf_name: Austin, Kyle
foaf_surname: Austin
- foaf_Person:
foaf_givenName: Ziga
foaf_name: Virk, Ziga
foaf_surname: Virk
foaf_workInfoHomepage: http://www.librecat.org/personId=2E36B656-F248-11E8-B48F-1D18A9856A87
bibo_doi: 10.1016/j.topol.2016.10.005
bibo_volume: 215
dct_date: 2017^xs_gYear
dct_isPartOf:
- http://id.crossref.org/issn/01668641
dct_language: eng
dct_publisher: Elsevier@
dct_title: Higson compactification and dimension raising@
...