@article{465,
abstract = {The edit distance between two words w 1 , w 2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w 1 to w 2 . The edit distance generalizes to languages L 1 , L 2 , where the edit distance from L 1 to L 2 is the minimal number k such that for every word from L 1 there exists a word in L 2 with edit distance at most k . We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1) deciding whether, for a given threshold k , the edit distance from a pushdown automaton to a finite automaton is at most k , and (2) deciding whether the edit distance from a pushdown automaton to a finite automaton is finite. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Otop, Jan},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {3},
publisher = {International Federation of Computational Logic},
title = {{Edit distance for pushdown automata}},
doi = {10.23638/LMCS-13(3:23)2017},
volume = {13},
year = {2017},
}