Back to the future: Towards a theory of timed regular languages
The authors introduce two-way timed automata-timed automata that can move back and forth while reading a timed word. Two-wayness in its unrestricted form leads, like nondeterminism, to the undecidability of language inclusion. However, if they restrict the number of times an input symbol may be revisited, then two-wayness is both harmless and desirable. The authors show that the resulting class of bounded two-way deterministic timed automata is closed under all boolean operations, has decidable (PSPACE-complete) emptiness and inclusion problems, and subsumes all decidable real-time logics we know. They obtain a strict hierarchy of real-time properties: deterministic timed automata can accept more languages as the bound on the number of times an input symbol may be revisited is increased. This hierarchy is also enforced by the number of alternations between past and future operators in temporal logic. The combination of the results leads to a decision procedure for a real-time logic with past operators
177 - 186
177 - 186
IEEE