# Alternating weighted automata

Chatterjee K, Doyen L, Henzinger TA. 2009. Alternating weighted automata. FCT: Fundamentals of Computation Theory, LNCS, vol. 5699, 3–13.

Download

*Conference Paper*|

*Published*|

*English*

**Scopus indexed**

Author

Department

Series Title

LNCS

Abstract

Weighted automata are finite automata with numerical weights on transitions. Nondeterministic weighted automata define quantitative languages L that assign to each word w a real number L(w) computed as the maximal value of all runs over w, and the value of a run r is a function of the sequence of weights that appear along r. There are several natural functions to consider such as Sup, LimSup, LimInf, limit average, and discounted sum of transition weights.
We introduce alternating weighted automata in which the transitions of the runs are chosen by two players in a turn-based fashion. Each word is assigned the maximal value of a run that the first player can enforce regardless of the choices made by the second player. We survey the results about closure properties, expressiveness, and decision problems for nondeterministic weighted automata, and we extend these results to alternating weighted automata.
For quantitative languages L 1 and L 2, we consider the pointwise operations max(L 1,L 2), min(L 1,L 2), 1 − L 1, and the sum L 1 + L 2. We establish the closure properties of all classes of alternating weighted automata with respect to these four operations.
We next compare the expressive power of the various classes of alternating and nondeterministic weighted automata over infinite words. In particular, for limit average and discounted sum, we show that alternation brings more expressive power than nondeterminism.
Finally, we present decidability results and open questions for the quantitative extension of the classical decision problems in automata theory: emptiness, universality, language inclusion, and language equivalence.

Publishing Year

Date Published

2009-09-10

Acknowledgement

This research was supported in part by the Swiss National Science Foundation under the Indo-Swiss Joint Research Programme, by the European Network of Excellence on Embedded Systems Design (ArtistDesign), by the European Combest, Quasimodo, and Gasics projects, by the PAI program Moves funded by the Belgian Federal Government, and by the CFV (Federated Center in Verification) funded by the F.R.S.-FNRS.

Volume

5699

Page

3 - 13

Conference

FCT: Fundamentals of Computation Theory

Conference Location

Wroclaw, Poland

Conference Date

2009-09-02 – 2009-09-04

IST-REx-ID

### Cite this

Chatterjee K, Doyen L, Henzinger TA. Alternating weighted automata. In: Vol 5699. Springer; 2009:3-13. doi:10.1007/978-3-642-03409-1_2

Chatterjee, K., Doyen, L., & Henzinger, T. A. (2009). Alternating weighted automata (Vol. 5699, pp. 3–13). Presented at the FCT: Fundamentals of Computation Theory, Wroclaw, Poland: Springer. https://doi.org/10.1007/978-3-642-03409-1_2

Chatterjee, Krishnendu, Laurent Doyen, and Thomas A Henzinger. “Alternating Weighted Automata,” 5699:3–13. Springer, 2009. https://doi.org/10.1007/978-3-642-03409-1_2.

K. Chatterjee, L. Doyen, and T. A. Henzinger, “Alternating weighted automata,” presented at the FCT: Fundamentals of Computation Theory, Wroclaw, Poland, 2009, vol. 5699, pp. 3–13.

Chatterjee, Krishnendu, et al.

*Alternating Weighted Automata*. Vol. 5699, Springer, 2009, pp. 3–13, doi:10.1007/978-3-642-03409-1_2.**All files available under the following license(s):**

**Copyright Statement:**

**This Item is protected by copyright and/or related rights.**[...]

**Main File(s)**

File Name

Access Level

Open Access

Date Uploaded

2018-12-12

MD5 Checksum

e8f53abb63579de3f2bff58b2a1188e2