Alternating weighted automata

K. Chatterjee, L. Doyen, T.A. Henzinger, in:, Springer, 2009, pp. 3–13.

Download
OA 164.43 KB

Conference Paper | Published | English
Department
Series Title
LNCS
Abstract
Weighted automata are finite automata with numerical weights on transitions. Nondeterministic weighted automata define quantitative languages L that assign to each word w a real number L(w) computed as the maximal value of all runs over w, and the value of a run r is a function of the sequence of weights that appear along r. There are several natural functions to consider such as Sup, LimSup, LimInf, limit average, and discounted sum of transition weights. We introduce alternating weighted automata in which the transitions of the runs are chosen by two players in a turn-based fashion. Each word is assigned the maximal value of a run that the first player can enforce regardless of the choices made by the second player. We survey the results about closure properties, expressiveness, and decision problems for nondeterministic weighted automata, and we extend these results to alternating weighted automata. For quantitative languages L 1 and L 2, we consider the pointwise operations max(L 1,L 2), min(L 1,L 2), 1 − L 1, and the sum L 1 + L 2. We establish the closure properties of all classes of alternating weighted automata with respect to these four operations. We next compare the expressive power of the various classes of alternating and nondeterministic weighted automata over infinite words. In particular, for limit average and discounted sum, we show that alternation brings more expressive power than nondeterminism. Finally, we present decidability results and open questions for the quantitative extension of the classical decision problems in automata theory: emptiness, universality, language inclusion, and language equivalence.
Publishing Year
Date Published
2009-09-10
Acknowledgement
This research was supported in part by the Swiss National Science Foundation under the Indo-Swiss Joint Research Programme, by the European Network of Excellence on Embedded Systems Design (ArtistDesign), by the European Combest, Quasimodo, and Gasics projects, by the PAI program Moves funded by the Belgian Federal Government, and by the CFV (Federated Center in Verification) funded by the F.R.S.-FNRS.
Volume
5699
Page
3 - 13
Conference
FCT: Fundamentals of Computation Theory
Conference Location
Wroclaw, Poland
Conference Date
2009-09-02 – 2009-09-04
IST-REx-ID

Cite this

Chatterjee K, Doyen L, Henzinger TA. Alternating weighted automata. In: Vol 5699. Springer; 2009:3-13. doi:10.1007/978-3-642-03409-1_2
Chatterjee, K., Doyen, L., & Henzinger, T. A. (2009). Alternating weighted automata (Vol. 5699, pp. 3–13). Presented at the FCT: Fundamentals of Computation Theory, Wroclaw, Poland: Springer. https://doi.org/10.1007/978-3-642-03409-1_2
Chatterjee, Krishnendu, Laurent Doyen, and Thomas A Henzinger. “Alternating Weighted Automata,” 5699:3–13. Springer, 2009. https://doi.org/10.1007/978-3-642-03409-1_2.
K. Chatterjee, L. Doyen, and T. A. Henzinger, “Alternating weighted automata,” presented at the FCT: Fundamentals of Computation Theory, Wroclaw, Poland, 2009, vol. 5699, pp. 3–13.
Chatterjee K, Doyen L, Henzinger TA. 2009. Alternating weighted automata. FCT: Fundamentals of Computation Theory, LNCS, vol. 5699. 3–13.
Chatterjee, Krishnendu, et al. Alternating Weighted Automata. Vol. 5699, Springer, 2009, pp. 3–13, doi:10.1007/978-3-642-03409-1_2.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-12T10:15:09Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar