TY - JOUR AB - Analysis of multilocus evolution is usually intractable for more than n ~ 10 genes, because the frequencies of very large numbers of genotypes must be followed. An exact analysis of up to n ~ 100 loci is feasible for a symmetrical model, in which a set of unlinked loci segregate for two alleles (labeled '0' and '1') with interchangeable effects on fitness. All haploid genotypes with the same number of 1 alleles can then remain equally frequent. However, such a symmetrical solution may be unstable: for example, under stabilizing selection, populations tend to fix any one genotype which approaches the optimum. Here, we show how the 2' x 2' stability matrix can be decomposed into a set of matrices, each no larger than n x n. This allows the stability of symmetrical solutions to be determined. We apply the method to stabilizing and disruptive selection in a single deme and to selection against heterozygotes in a linear cline. (C) 2000 Academic Press. AU - Barton, Nicholas H AU - Shpak, Max ID - 4272 IS - 3 JF - Theoretical Population Biology SN - 0040-5809 TI - The stability of symmetrical solutions to polygenic models VL - 57 ER -