Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva

M. Granato, F. Van Eeden, U. Schach, T. Trowe, M. Brand, M. Furutani Seiki, P. Haffter, M. Hammerschmidt, C. Heisenberg, Y. Jiang, D. Kane, R. Kelsh, M. Mullins, J. Odenthal, C. Nüsslein Volhard, Development 123 (1996) 399–413.

Download
No fulltext has been uploaded. References only!
Journal Article | Published
Author
Granato, Michael; van Eeden, Fredericus J; Schach, Ursula; Trowe, Torsten; Brand, Michael; Furutani-Seiki, Makoto; Haffter, Pascal; Hammerschmidt, Matthias; Heisenberg, Carl-Philipp; Jiang, YunJin; Kane, Donald A; Kelsh, Robert N
All
Abstract
Zebrafish embryos and larvae have stage-specific patterns of motility or locomotion, Two embryonic structures accomplish this behavior: the central nervous system (CNS) and skeletal muscles. To identify genes that are functionally involved in mediating and controlling different patterns of embryonic and larval motility, we included a simple touch response test in our zebrafish large-scale genetic screen, In total we identified 166 mutants with specific defects in embryonic motility. These mutants fall into 14 phenotypically distinct groups comprising at least 48 genes, Here we describe the various phenotypic groups including mutants with no or reduced motility, mechanosensory defective mutants, 'spastic' mutants, circling mutants and motor circuit defective mutants, In 63 mutants, defining 18 genes, striation of semitic muscles is reduced, Phenotypic analysis provides evidence that these 18 genes have distinct and consecutive functions during semitic muscle development. The genes sloth (slo) and frozen (fro) already act during myoblast differentiation, while 13 genes appear to function later, in the formation of myofibers and the organization of sarcomeres, Mutations in four other genes result in muscle-specific degeneration, 103 mutations, defining at least 30 genes, cause no obvious defects in muscle formation and may instead affect neuronal development. Analysis of the behavioral defects suggests that these genes participate in the diverse locomotion patterns observed, such as touch response, rhythmic tail movements, equilibrium control, or that they simply confer general motility to the animal, In some of these mutants specific defects in the developing nervous system are detected, Mutations in two genes, nevermind (nev) and macho (mao), affect axonal projection in the optic tectum, whereas axon formation and elongation of motorneurons are disrupted by mutations in the diwanka (diw) and the unplugged (unp) genes.
Publishing Year
Date Published
1996-12-01
Journal Title
Development
Volume
123
Page
399 - 413
IST-REx-ID

Cite this

Granato M, Van Eeden F, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development. 1996;123:399-413.
Granato, M., Van Eeden, F., Schach, U., Trowe, T., Brand, M., Furutani Seiki, M., … Nüsslein Volhard, C. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development, 123, 399–413.
Granato, Michael, Fredericus Van Eeden, Ursula Schach, Torsten Trowe, Michael Brand, Makoto Furutani Seiki, Pascal Haffter, et al. “Genes Controlling and Mediating Locomotion Behavior of the Zebrafish Embryo and Larva.” Development 123 (1996): 399–413.
M. Granato et al., “Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva,” Development, vol. 123, pp. 399–413, 1996.
Granato M, Van Eeden F, Schach U, Trowe T, Brand M, Furutani Seiki M, Haffter P, Hammerschmidt M, Heisenberg C, Jiang Y, Kane D, Kelsh R, Mullins M, Odenthal J, Nüsslein Volhard C. 1996. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development. 123, 399–413.
Granato, Michael, et al. “Genes Controlling and Mediating Locomotion Behavior of the Zebrafish Embryo and Larva.” Development, vol. 123, Company of Biologists, 1996, pp. 399–413.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar