On the number of non-hexagons in a planar tiling

A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414.


Journal Article | Published | English
Department
Abstract
We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.
Publishing Year
Date Published
2018-04-01
Journal Title
Comptes Rendus Mathematique
Volume
356
Issue
4
Page
412-414
ISSN
IST-REx-ID

Cite this

Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005
Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique, 356(4), 412–414. https://doi.org/10.1016/j.crma.2018.03.005
Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique 356, no. 4 (2018): 412–14. https://doi.org/10.1016/j.crma.2018.03.005.
A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4, pp. 412–414, 2018.
Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414.
Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1805.01652

Search this title in

Google Scholar