@article{4065,
abstract = {We prove that given n⩾3 convex, compact, and pairwise disjoint sets in the plane, they may be covered with n non-overlapping convex polygons with a total of not more than 6n−9 sides, and with not more than 3n−6 distinct slopes. Furthermore, we construct sets that require 6n−9 sides and 3n−6 slopes for n⩾3. The upper bound on the number of slopes implies a new bound on a recently studied transversal problem.},
author = {Herbert Edelsbrunner and Robison, Arch D and Shen, Xiao-Jun},
journal = {Discrete Mathematics},
number = {2},
pages = {153 -- 164},
publisher = {Elsevier},
title = {{Covering convex sets with non-overlapping polygons}},
doi = {10.1016/0012-365X(90)90147-A},
volume = {81},
year = {1990},
}