Points and triangles in the plane and halving planes in space
We prove that for any set S of n points in the plane and n3-α triangles spanned by the points in S there exists a point (not necessarily in S) contained in at least n3-3α/(c log5 n) of the triangles. This implies that any set of n points in three-dimensional space defines at most {Mathematical expression} halving planes.
6
1
435 - 442
435 - 442
Springer