Euclidean minimum spanning trees and bichromatic closest pairs
Agarwal, Pankaj K
Herbert Edelsbrunner
Schwarzkopf, Otfried
Welzl, Emo
We present an algorithm to compute a Euclidean minimum spanning tree of a given set S of N points in Ed in time O(Fd (N,N) logd N), where Fd (n,m) is the time required to compute a bichromatic closest pair among n red and m green points in Ed . If Fd (N,N)=Ω(N1+ε), for some fixed e{open}>0, then the running time improves to O(Fd (N,N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closest pair in expected time O((nm log n log m)2/3+m log2 n+n log2 m) in E3, which yields an O(N4/3 log4/3 N) expected time, algorithm for computing a Euclidean minimum spanning tree of N points in E3. In d≥4 dimensions we obtain expected time O((nm)1-1/([d/2]+1)+ε+m log n+n log m) for the bichromatic closest pair problem and O(N2-2/([d/2]+1)ε) for the Euclidean minimum spanning tree problem, for any positive e{open}.
Springer
1991
info:eu-repo/semantics/article
doc-type:article
text
https://research-explorer.app.ist.ac.at/record/4061
Agarwal P, Edelsbrunner H, Schwarzkopf O, Welzl E. Euclidean minimum spanning trees and bichromatic closest pairs. <i>Discrete & Computational Geometry</i>. 1991;6(1):407-422. doi:<a href="https://doi.org/10.1007/BF02574698">10.1007/BF02574698</a>
info:eu-repo/semantics/altIdentifier/doi/10.1007/BF02574698
info:eu-repo/semantics/closedAccess