Extreme elevation on a 2-manifold

P. Agarwal, H. Edelsbrunner, J. Harer, Y. Wang, Discrete & Computational Geometry 36 (2006) 553–572.

Download
No fulltext has been uploaded. References only!

Journal Article | Published
Author
; ; ;
Abstract
Given a smoothly embedded 2-manifold in R-3, we define the elevation of a point as the height difference to a canonically defined second point on the same manifold. Our definition is invariant under rigid motions and can be used to define features such as lines of discontinuous or continuous but non-smooth elevation. We give an algorithm for finding points of locally maximum elevation, which we suggest mark cavities and protrusions and are useful in matching shapes as for example in protein docking.
Publishing Year
Date Published
2006-12-01
Journal Title
Discrete & Computational Geometry
Volume
36
Issue
4
Page
553 - 572
IST-REx-ID

Cite this

Agarwal P, Edelsbrunner H, Harer J, Wang Y. Extreme elevation on a 2-manifold. Discrete & Computational Geometry. 2006;36(4):553-572. doi:10.1007/s00454-006-1265-8
Agarwal, P., Edelsbrunner, H., Harer, J., & Wang, Y. (2006). Extreme elevation on a 2-manifold. Discrete & Computational Geometry, 36(4), 553–572. https://doi.org/10.1007/s00454-006-1265-8
Agarwal, Pankaj, Herbert Edelsbrunner, John Harer, and Yusu Wang. “Extreme Elevation on a 2-Manifold.” Discrete & Computational Geometry 36, no. 4 (2006): 553–72. https://doi.org/10.1007/s00454-006-1265-8.
P. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, “Extreme elevation on a 2-manifold,” Discrete & Computational Geometry, vol. 36, no. 4, pp. 553–572, 2006.
Agarwal P, Edelsbrunner H, Harer J, Wang Y. 2006. Extreme elevation on a 2-manifold. Discrete & Computational Geometry. 36(4), 553–572.
Agarwal, Pankaj, et al. “Extreme Elevation on a 2-Manifold.” Discrete & Computational Geometry, vol. 36, no. 4, Springer, 2006, pp. 553–72, doi:10.1007/s00454-006-1265-8.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar