Stability of persistence diagrams
The persistence diagram of a real-valued function on a topological space is a multiset of points in the extended plane. We prove that under mild assumptions on the function, the persistence diagram is stable: small changes in the function imply only small changes in the diagram. We apply this result to estimating the homology of sets in a metric space and to comparing and classifying geometric shapes.
37
1
103 - 120
103 - 120
Springer