conference paper
Polygonal reconstruction from approximate offsets
published
yes
Eric
Berberich
author
Dan
Halperin
author
Michael
Kerber
author 36E4574A-F248-11E8-B48F-1D18A9856A870000-0002-8030-9299
Roza
Pogalnikova
author
HeEd
department
EuroCG: European Workshop on Computational Geometry
Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape with a disk of fixed radius? If it does, we also seek a preferably simple solution shape P;P’s offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give a decision algorithm for fixed radius in O(nlogn) time that handles any polygonal shape. For convex shapes, the complexity drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one.
TU Dortmund2010Dortmund, Germany
eng
12 - 23
Berberich, Eric, Dan Halperin, Michael Kerber, and Roza Pogalnikova. “Polygonal Reconstruction from Approximate Offsets,” 12–23. TU Dortmund, 2010.
Berberich, Eric, et al. <i>Polygonal Reconstruction from Approximate Offsets</i>. TU Dortmund, 2010, pp. 12–23.
E. Berberich, D. Halperin, M. Kerber, and R. Pogalnikova, “Polygonal reconstruction from approximate offsets,” presented at the EuroCG: European Workshop on Computational Geometry, Dortmund, Germany, 2010, pp. 12–23.
E. Berberich, D. Halperin, M. Kerber, R. Pogalnikova, in:, TU Dortmund, 2010, pp. 12–23.
Berberich E, Halperin D, Kerber M, Pogalnikova R. 2010. Polygonal reconstruction from approximate offsets. EuroCG: European Workshop on Computational Geometry 12–23.
Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2010). Polygonal reconstruction from approximate offsets (pp. 12–23). Presented at the EuroCG: European Workshop on Computational Geometry, Dortmund, Germany: TU Dortmund.
Berberich E, Halperin D, Kerber M, Pogalnikova R. Polygonal reconstruction from approximate offsets. In: TU Dortmund; 2010:12-23.
38502018-12-11T12:05:30Z2019-08-02T12:38:18Z