conference paper
Polygonal reconstruction from approximate offsets
published
yes
Eric
Berberich
author
Dan
Halperin
author
Michael
Kerber
author 36E4574A-F248-11E8-B48F-1D18A9856A870000-0002-8030-9299
Roza
Pogalnikova
author
HeEd
department
EuroCG: European Workshop on Computational Geometry
Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape with a disk of fixed radius? If it does, we also seek a preferably simple solution shape P;P’s offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give a decision algorithm for fixed radius in O(nlogn) time that handles any polygonal shape. For convex shapes, the complexity drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one.
TU Dortmund2010Dortmund, Germany
eng
12 - 23
Berberich E, Halperin D, Kerber M, Pogalnikova R. Polygonal reconstruction from approximate offsets. In: TU Dortmund; 2010:12-23.
E. Berberich, D. Halperin, M. Kerber, R. Pogalnikova, in:, TU Dortmund, 2010, pp. 12–23.
Berberich E, Halperin D, Kerber M, Pogalnikova R. 2010. Polygonal reconstruction from approximate offsets. EuroCG: European Workshop on Computational Geometry 12–23.
Berberich, Eric, Dan Halperin, Michael Kerber, and Roza Pogalnikova. “Polygonal Reconstruction from Approximate Offsets,” 12–23. TU Dortmund, 2010.
E. Berberich, D. Halperin, M. Kerber, and R. Pogalnikova, “Polygonal reconstruction from approximate offsets,” presented at the EuroCG: European Workshop on Computational Geometry, Dortmund, Germany, 2010, pp. 12–23.
Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2010). Polygonal reconstruction from approximate offsets (pp. 12–23). Presented at the EuroCG: European Workshop on Computational Geometry, Dortmund, Germany: TU Dortmund.
Berberich, Eric, et al. <i>Polygonal Reconstruction from Approximate Offsets</i>. TU Dortmund, 2010, pp. 12–23.
38502018-12-11T12:05:30Z2019-08-02T12:38:18Z