Control of directed cell migration in vivo by membrane-to-cortex attachment

A. Diz Muñoz, M. Krieg, M. Bergert, I. Ibarlucea Benitez, D. Müller, E. Paluch, C.-P.J. Heisenberg, PLoS Biology 8 (2010) e1000544.

Download
OA 799.51 KB

Journal Article | Published | English
Author
; ; ; ; ; ;
Department
Abstract
Cell shape and motility are primarily controlled by cellular mechanics. The attachment of the plasma membrane to the underlying actomyosin cortex has been proposed to be important for cellular processes involving membrane deformation. However, little is known about the actual function of membrane-to-cortex attachment (MCA) in cell protrusion formation and migration, in particular in the context of the developing embryo. Here, we use a multidisciplinary approach to study MCA in zebrafish mesoderm and endoderm (mesendoderm) germ layer progenitor cells, which migrate using a combination of different protrusion types, namely, lamellipodia, filopodia, and blebs, during zebrafish gastrulation. By interfering with the activity of molecules linking the cortex to the membrane and measuring resulting changes in MCA by atomic force microscopy, we show that reducing MCA in mesendoderm progenitors increases the proportion of cellular blebs and reduces the directionality of cell migration. We propose that MCA is a key parameter controlling the relative proportions of different cell protrusion types in mesendoderm progenitors, and thus is key in controlling directed migration during gastrulation.
Publishing Year
Date Published
2010-11-30
Journal Title
PLoS Biology
Acknowledgement
We would like to thank A. G. Clark, S. Grill, A. Oates, E. Raz, L. Rohde, and M. Zerial for reading earlier versions of the manuscript. We are grateful to W. Zachariae, Y. Arboleda-Estudillo, S. Schneider, P. Stockinger, D. Panhans, M. Biro, J. C. Olaya, and the BIOTEC/MPI-CBG zebrafish and imaging facilities for help and advice at various stages of this project and to J. Helenius for help with programming. This work was supported by grants from the Boehringer Ingelheim Fonds to MK, the Polish Ministry of Science and Higher Education to E. P., and the Deutsche Forschungsgemeinschaft (HE 3231/6-1 and PA 1590/1-1) to CPH and EP.
Volume
8
Issue
11
Article Number
e1000544
IST-REx-ID

Cite this

Diz Muñoz A, Krieg M, Bergert M, et al. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biology. 2010;8(11):e1000544. doi:10.1371/journal.pbio.1000544
Diz Muñoz, A., Krieg, M., Bergert, M., Ibarlucea Benitez, I., Müller, D., Paluch, E., & Heisenberg, C.-P. J. (2010). Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biology, 8(11), e1000544. https://doi.org/10.1371/journal.pbio.1000544
Diz Muñoz, Alba, Michael Krieg, Martin Bergert, Itziar Ibarlucea Benitez, Daniel Müller, Ewa Paluch, and Carl-Philipp J Heisenberg. “Control of Directed Cell Migration in Vivo by Membrane-to-Cortex Attachment.” PLoS Biology 8, no. 11 (2010): e1000544. https://doi.org/10.1371/journal.pbio.1000544.
A. Diz Muñoz et al., “Control of directed cell migration in vivo by membrane-to-cortex attachment,” PLoS Biology, vol. 8, no. 11, p. e1000544, 2010.
Diz Muñoz A, Krieg M, Bergert M, Ibarlucea Benitez I, Müller D, Paluch E, Heisenberg C-PJ. 2010. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biology. 8(11), e1000544.
Diz Muñoz, Alba, et al. “Control of Directed Cell Migration in Vivo by Membrane-to-Cortex Attachment.” PLoS Biology, vol. 8, no. 11, Public Library of Science, 2010, p. e1000544, doi:10.1371/journal.pbio.1000544.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-12T10:08:24Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar