A multiscale approach to mesh-based surface tension flows

Thürey N, Wojtan C, Gross M, Turk G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics. 29(4).

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
Thürey, Nils; Wojtan, ChrisISTA ; Gross, Markus; Turk, Greg
Abstract
We present an approach to simulate flows driven by surface tension based on triangle meshes. Our method consists of two simulation layers: the first layer is an Eulerian method for simulating surface tension forces that is free from typical strict time step constraints. The second simulation layer is a Lagrangian finite element method that simulates sub-grid scale wave details on the fluid surface. The surface wave simulation employs an unconditionally stable, symplectic time integration method that allows for a high propagation speed due to strong surface tension. Our approach can naturally separate the grid-and sub-grid scales based on a volumepreserving mean curvature flow. As our model for the sub-grid dynamics enforces a local conservation of mass, it leads to realistic pinch off and merging effects. In addition to this method for simulating dynamic surface tension effects, we also present an efficient non-oscillatory approximation for capturing damped surface tension behavior. These approaches allow us to efficiently simulate complex phenomena associated with strong surface tension, such as Rayleigh-Plateau instabilities and crown splashes, in a short amount of time.
Publishing Year
Date Published
2010-07-01
Journal Title
ACM Transactions on Graphics
Volume
29
Issue
4
IST-REx-ID

Cite this

Thürey N, Wojtan C, Gross M, Turk G. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics. 2010;29(4). doi:10.1145/1778765.1778785
Thürey, N., Wojtan, C., Gross, M., & Turk, G. (2010). A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/1778765.1778785
Thürey, Nils, Chris Wojtan, Markus Gross, and Greg Turk. “A Multiscale Approach to Mesh-Based Surface Tension Flows.” ACM Transactions on Graphics. ACM, 2010. https://doi.org/10.1145/1778765.1778785.
N. Thürey, C. Wojtan, M. Gross, and G. Turk, “A multiscale approach to mesh-based surface tension flows,” ACM Transactions on Graphics, vol. 29, no. 4. ACM, 2010.
Thürey N, Wojtan C, Gross M, Turk G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics. 29(4).
Thürey, Nils, et al. “A Multiscale Approach to Mesh-Based Surface Tension Flows.” ACM Transactions on Graphics, vol. 29, no. 4, ACM, 2010, doi:10.1145/1778765.1778785.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar