TY - JOUR AB - The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte. AU - Luo, Zhishan AU - Márti Sánchez, Sara AU - Nafria, Raquel AU - Joshua, Gihan AU - De La Mata, Maria AU - Guardia, Pablo AU - Flox, Christina AU - Martínez Boubeta, Carlos AU - Simeonidis, Konstantinos AU - Llorca, Jordi AU - Morante, Joan AU - Arbiol, Jordi AU - Ibanez Sabate, Maria AU - Cabot, Andreu ID - 371 IS - 43 JF - ACS Applied Materials and Interfaces TI - Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte VL - 8 ER -