Kernel methods in computer vision

C. Lampert, Kernel Methods in Computer Vision, now, 2009.

Download
No fulltext has been uploaded. References only!

Book | Published | English
Abstract
Over the last years, kernel methods have established themselves as powerful tools for computer vision researchers as well as for practitioners. In this tutorial, we give an introduction to kernel methods in computer vision from a geometric perspective, introducing not only the ubiquitous support vector machines, but also less known techniques for regression, dimensionality reduction, outlier detection and clustering. Additionally, we give an outlook on very recent, non-classical techniques for the prediction of structure data, for the estimation of statistical dependency and for learning the kernel function itself. All methods are illustrated with examples of successful application from the recent computer vision research literature.
Publishing Year
Date Published
2009-09-03
Volume
4
Page
193 - 285
IST-REx-ID

Cite this

Lampert C. Kernel Methods in Computer Vision. Vol 4. now; 2009:193-285. doi:10.1561/0600000027
Lampert, C. (2009). Kernel methods in computer vision (Vol. 4, pp. 193–285). now. https://doi.org/10.1561/0600000027
Lampert, Christoph. Kernel Methods in Computer Vision. Vol. 4. now, 2009. https://doi.org/10.1561/0600000027.
C. Lampert, Kernel methods in computer vision, vol. 4. now, 2009, pp. 193–285.
Lampert C. 2009. Kernel methods in computer vision, now,p.
Lampert, Christoph. Kernel Methods in Computer Vision. Vol. 4, now, 2009, pp. 193–285, doi:10.1561/0600000027.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar
ISBN Search