@article{3617, abstract = {The coalescent process can describe the effects of selection at linked loci only if selection is so strong that genotype frequencies evolve deterministically. Here, we develop methods proposed by Kaplan, Darden, and Hudson to find the effects of weak selection. We show that the overall effect is given by an extension to Price's equation: the change in properties such as moments of coalescence times is equal to the covariance between those properties and the fitness of the sample of genes. The distribution of coalescence times differs substantially between allelic classes, even in the absence of selection. However, the average coalescence time between randomly chosen genes is insensitive to the current allele frequency and is affected significantly by purifying selection only if deleterious mutations are common and selection is strong (i.e., the product of population size and selection coefficient, Ns > 3). Balancing selection increases mean coalescence times, but the effect becomes large only when mutation rates between allelic classes are low and when selection is extremely strong. Our analysis supports previous simulations that show that selection has surprisingly little effect on genealogies. Moreover, small fluctuations in allele frequency due to random drift can greatly reduce any such effects. This will make it difficult to detect the action of selection from neutral variation alone.}, author = {Nicholas Barton and Etheridge, Alison M}, journal = {Genetics}, number = {2}, pages = {1115 -- 1131}, publisher = {Genetics Society of America}, title = {{The effect of selection on genealogies}}, doi = {10.1534/genetics.166.2.1115}, volume = {166}, year = {2004}, }