Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification

Koh D, Burnashev N, Jonas PM. 1995. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. Journal of Physiology. 486(Pt 2), 305–312.


Journal Article | Published
Author
Koh, Duk S; Burnashev, Nail A; Jonas, Peter MIST Austria
Abstract
1. The influence of intracellular factors on current rectification of different subtypes of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) was studied in rat brain slices by combining fast application of glutamate with patch pipette perfusion. 2. The peak current-voltage (I-V) relation of the AMPARs expressed in Bergmann glial cells of cerebellum and dentate gyrus (DG) basket cells of hippocampus was weakly rectifying in outside-out patches and nystatin-perforated vesicles, but showed a doubly rectifying shape with a region of reduced slope between 0 and +40 mV in nucleated patches. The I-V relation of AMPARs expressed in hippocampal CA3 pyramidal neurones was linear in all recording configurations. 3. Intracellular application of 2.5 μM spermine, a naturally occurring polyamine, blocked outward currents in outside-oat patches from Bergmann glial cells and DG basket cells in a voltage-dependent manner, generating I-V relations with a doubly rectifying shape which were similar to those recorded in nucleated patches. AMPARs in CA3 pyramidal cell patches were unaffected by 25 μM spermine. 4. The half-maximal blocking concentration of spermine at +40 mV was 0.3 μM in Bergmann glial cell patches and 1.5 μM in DG basket cell patches, whereas it was much higher (≥ 100 μM) for CA3 pyramidal. cell patches. Spermidine also affected current rectification, but with lower affinity. The block of outward current by polyamines following voltage jumps developed within < 0.5 ms. 5. We conclude that current rectification, rather than being an intrinsic property of the Ca2+ permeable AMPAR channel, is generated by polyamine block.
Publishing Year
Date Published
1995-07-15
Journal Title
Journal of Physiology
Volume
486
Issue
Pt 2
Page
305 - 312
IST-REx-ID

Cite this

Koh D, Burnashev N, Jonas PM. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. Journal of Physiology. 1995;486(Pt 2):305-312. doi:10.1113/jphysiol.1995.sp020813
Koh, D., Burnashev, N., & Jonas, P. M. (1995). Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. Journal of Physiology. Wiley-Blackwell. https://doi.org/10.1113/jphysiol.1995.sp020813
Koh, Duk, Nail Burnashev, and Peter M Jonas. “Block of Native Ca(2+)-Permeable AMPA Receptors in Rat Brain by Intracellular Polyamines Generates Double Rectification.” Journal of Physiology. Wiley-Blackwell, 1995. https://doi.org/10.1113/jphysiol.1995.sp020813.
D. Koh, N. Burnashev, and P. M. Jonas, “Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification,” Journal of Physiology, vol. 486, no. Pt 2. Wiley-Blackwell, pp. 305–312, 1995.
Koh D, Burnashev N, Jonas PM. 1995. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. Journal of Physiology. 486(Pt 2), 305–312.
Koh, Duk, et al. “Block of Native Ca(2+)-Permeable AMPA Receptors in Rat Brain by Intracellular Polyamines Generates Double Rectification.” Journal of Physiology, vol. 486, no. Pt 2, Wiley-Blackwell, 1995, pp. 305–12, doi:10.1113/jphysiol.1995.sp020813.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar