Properties of Shaker-homologous potassium channels expressed in the mammalian brain.

Ruppersberg P, Ermler M, Knopf M, Kues W, Jonas PM, Koenen M. 1993. Properties of Shaker-homologous potassium channels expressed in the mammalian brain. Cellular Physiology and Biochemistry. 3, 250–269.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Ruppersberg, Peter; Ermler, Mamfred; Knopf, Martin; Kues, Wilfried; Jonas, Peter MISTA ; Koenen, Michael
Abstract
Sixteen different K+ channel subtypes have been cloned from mammalian tissue. Considering their sequence homology to Drosophila Shaker, Shab, Shaw and Shal channels, they were classified into four corresponding classes Kv1-4. All K+ channels belonging to these classes consist of four subunits with each six hydrophobic segments (S1-S6) and a characteristic structure-function relationship of certain domains in their amino acid sequence. These domains are, the inactivation gate in the N-terminal region of the sequence, the voltage sensor in the fourth hydrophobic segment (S4), and the pore-region in the H5 segment between S5 and S6. In some functional properties K+ channels cloned from the mammalian brain, however, differ from Drosophila K+ channels. These are pharmacological differences, differences in the threshold of activation and in regulation of inactivation. Part of these differences are important to understand their physiological role in the brain. Based on their functional characteristics the expression pattern of cloned K+ channels in the rat brain can be correlated with the properties of K+ currents measured in central neurones.
Publishing Year
Date Published
1993-01-01
Journal Title
Cellular Physiology and Biochemistry
Volume
3
Page
250 - 269
ISSN
IST-REx-ID

Cite this

Ruppersberg P, Ermler M, Knopf M, Kues W, Jonas PM, Koenen M. Properties of Shaker-homologous potassium channels expressed in the mammalian brain. Cellular Physiology and Biochemistry. 1993;3:250-269. doi:10.1159/000154691
Ruppersberg, P., Ermler, M., Knopf, M., Kues, W., Jonas, P. M., & Koenen, M. (1993). Properties of Shaker-homologous potassium channels expressed in the mammalian brain. Cellular Physiology and Biochemistry. S. Karger AG. https://doi.org/10.1159/000154691
Ruppersberg, Peter, Mamfred Ermler, Martin Knopf, Wilfried Kues, Peter M Jonas, and Michael Koenen. “Properties of Shaker-Homologous Potassium Channels Expressed in the Mammalian Brain.” Cellular Physiology and Biochemistry. S. Karger AG, 1993. https://doi.org/10.1159/000154691.
P. Ruppersberg, M. Ermler, M. Knopf, W. Kues, P. M. Jonas, and M. Koenen, “Properties of Shaker-homologous potassium channels expressed in the mammalian brain.,” Cellular Physiology and Biochemistry, vol. 3. S. Karger AG, pp. 250–269, 1993.
Ruppersberg P, Ermler M, Knopf M, Kues W, Jonas PM, Koenen M. 1993. Properties of Shaker-homologous potassium channels expressed in the mammalian brain. Cellular Physiology and Biochemistry. 3, 250–269.
Ruppersberg, Peter, et al. “Properties of Shaker-Homologous Potassium Channels Expressed in the Mammalian Brain.” Cellular Physiology and Biochemistry, vol. 3, S. Karger AG, 1993, pp. 250–69, doi:10.1159/000154691.

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar