10.1145/1998196.1998225
Berberich, Eric
Eric
Berberich
Halperin, Dan
Dan
Halperin
Kerber, Michael
Michael
Kerber0000-0002-8030-9299
Pogalnikova, Roza
Roza
Pogalnikova
Deconstructing approximate offsets
ACM
2011
2018-12-11T12:02:42Z
2020-01-21T11:49:01Z
conference
https://research-explorer.app.ist.ac.at/record/3329
https://research-explorer.app.ist.ac.at/record/3329.json
We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.