Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens

M. Smutny, S. Wu, G. Gomez, S. Mangold, A. Yap, N. Hamilton, PLoS One 6 (2011).

Download
OA 1.98 MB

Journal Article | Published | English
Author
; ; ; ; ;
Department
Abstract
The zonula adherens (ZA) of epithelial cells is a site of cell-cell adhesion where cellular forces are exerted and resisted. Increasing evidence indicates that E-cadherin adhesion molecules at the ZA serve to sense force applied on the junctions and coordinate cytoskeletal responses to those forces. Efforts to understand the role that cadherins play in mechanotransduction have been limited by the lack of assays to measure the impact of forces on the ZA. In this study we used 4D imaging of GFP-tagged E-cadherin to analyse the movement of the ZA. Junctions in confluent epithelial monolayers displayed prominent movements oriented orthogonal (perpendicular) to the ZA itself. Two components were identified in these movements: a relatively slow unidirectional (translational) component that could be readily fitted by least-squares regression analysis, upon which were superimposed more rapid oscillatory movements. Myosin IIB was a dominant factor responsible for driving the unilateral translational movements. In contrast, frequency spectrum analysis revealed that depletion of Myosin IIA increased the power of the oscillatory movements. This implies that Myosin IIA may serve to dampen oscillatory movements of the ZA. This extends our recent analysis of Myosin II at the ZA to demonstrate that Myosin IIA and Myosin IIB make distinct contributions to junctional movement at the ZA.
Publishing Year
Date Published
2011-07-22
Journal Title
PLoS One
Acknowledgement
his work was funded by the National Health and Medical Research Council (NHMRC) of Australia. M.S. was an Erwin Schroedinger postdoctoral fellow of the Austrian Science Fund (FWF), S.K.W. is supported by a UQ International Research Tuition Award and Research Scholarship, S.M .by an ANZ Trustees PhD Scholarship. A.S.Y. is a Research Fellow of the NHMRC. Confocal imaging was performed at the Australian Cancer Research Foundation (ACRF) Cancer Biology Imaging Centre at the Institute for Molecular Bioscience, established with the generous support of the ACRF.
Volume
6
Issue
7
IST-REx-ID

Cite this

Smutny M, Wu S, Gomez G, Mangold S, Yap A, Hamilton N. Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens. PLoS One. 2011;6(7). doi:10.1371/journal.pone.0022458
Smutny, M., Wu, S., Gomez, G., Mangold, S., Yap, A., & Hamilton, N. (2011). Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens. PLoS One, 6(7). https://doi.org/10.1371/journal.pone.0022458
Smutny, Michael, Selwin Wu, Guillermo Gomez, Sabine Mangold, Alpha Yap, and Nicholas Hamilton. “Multicomponent Analysis of Junctional Movements Regulated by Myosin II Isoforms at the Epithelial Zonula Adherens.” PLoS One 6, no. 7 (2011). https://doi.org/10.1371/journal.pone.0022458.
M. Smutny, S. Wu, G. Gomez, S. Mangold, A. Yap, and N. Hamilton, “Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens,” PLoS One, vol. 6, no. 7, 2011.
Smutny M, Wu S, Gomez G, Mangold S, Yap A, Hamilton N. 2011. Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens. PLoS One. 6(7).
Smutny, Michael, et al. “Multicomponent Analysis of Junctional Movements Regulated by Myosin II Isoforms at the Epithelial Zonula Adherens.” PLoS One, vol. 6, no. 7, Public Library of Science, 2011, doi:10.1371/journal.pone.0022458.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2019-05-10T10:51:43Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar