Weak multipliers for generalized van der Corput sequences

F. Pausinger, Journal de Theorie Des Nombres Des Bordeaux 24 (2012) 729–749.


Journal Article | Published | English
Department
Abstract
Generalized van der Corput sequences are onedimensional, infinite sequences in the unit interval. They are generated from permutations in integer base b and are the building blocks of the multi-dimensional Halton sequences. Motivated by recent progress of Atanassov on the uniform distribution behavior of Halton sequences, we study, among others, permutations of the form P(i) = ai (mod b) for coprime integers a and b. We show that multipliers a that either divide b - 1 or b + 1 generate van der Corput sequences with weak distribution properties. We give explicit lower bounds for the asymptotic distribution behavior of these sequences and relate them to sequences generated from the identity permutation in smaller bases, which are, due to Faure, the weakest distributed generalized van der Corput sequences.
Publishing Year
Date Published
2012-01-01
Journal Title
Journal de Theorie des Nombres des Bordeaux
Volume
24
Issue
3
Page
729 - 749
IST-REx-ID

Cite this

Pausinger F. Weak multipliers for generalized van der Corput sequences. Journal de Theorie des Nombres des Bordeaux. 2012;24(3):729-749. doi:10.5802/jtnb.819
Pausinger, F. (2012). Weak multipliers for generalized van der Corput sequences. Journal de Theorie Des Nombres Des Bordeaux, 24(3), 729–749. https://doi.org/10.5802/jtnb.819
Pausinger, Florian. “Weak Multipliers for Generalized van Der Corput Sequences.” Journal de Theorie Des Nombres Des Bordeaux 24, no. 3 (2012): 729–49. https://doi.org/10.5802/jtnb.819.
F. Pausinger, “Weak multipliers for generalized van der Corput sequences,” Journal de Theorie des Nombres des Bordeaux, vol. 24, no. 3, pp. 729–749, 2012.
Pausinger F. 2012. Weak multipliers for generalized van der Corput sequences. Journal de Theorie des Nombres des Bordeaux. 24(3), 729–749.
Pausinger, Florian. “Weak Multipliers for Generalized van Der Corput Sequences.” Journal de Theorie Des Nombres Des Bordeaux, vol. 24, no. 3, Universite de Bordeaux III, 2012, pp. 729–49, doi:10.5802/jtnb.819.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar