Wegner estimate and Anderson localization for random magnetic fields
László Erdös
Hasler, David G
We consider a two dimensional magnetic Schrödinger operator with a spatially stationary random magnetic field. We assume that the magnetic field has a positive lower bound and that it has Fourier modes on arbitrarily short scales. We prove the Wegner estimate at arbitrary energy, i. e. we show that the averaged density of states is finite throughout the whole spectrum. We also prove Anderson localization at the bottom of the spectrum.
Springer
2012
info:eu-repo/semantics/article
doc-type:article
text
http://purl.org/coar/resource_type/c_6501
https://research-explorer.app.ist.ac.at/record/2768
Erdös L, Hasler D. Wegner estimate and Anderson localization for random magnetic fields. <i>Communications in Mathematical Physics</i>. 2012;309(2):507-542. doi:<a href="https://doi.org/10.1007/s00220-011-1373-z">10.1007/s00220-011-1373-z</a>
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-011-1373-z
info:eu-repo/semantics/closedAccess