Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons
Elgart, Alexander
László Erdös
Schlein, Benjamin
Yau, Horng-Tzer
We consider the dynamics of N boson systems interacting through a pair potential N -1 V a (x i -x j ) where V a (x)=a -3 V(x/a). We denote the solution to the N-particle Schrödinger equation by Ψ N, t . Recall that the Gross-Pitaevskii (GP) equation is a nonlinear Schrödinger equation and the GP hierarchy is an infinite BBGKY hierarchy of equations so that if u t solves the GP equation, then the family of k-particle density matrices [InlineMediaObject not available: see fulltext.] solves the GP hierarchy. Under the assumption that a = Nε for 0 < ε < 3/5, we prove that as N→∞ the limit points of the k-particle density matrices of Ψ N, t are solutions of the GP hierarchy with the coupling constant in the nonlinear term of the GP equation given by ∫ V (x)dx. The uniqueness of the solutions of this hierarchy remains an open question.
Springer
2006
info:eu-repo/semantics/article
doc-type:article
text
https://research-explorer.app.ist.ac.at/record/2745
Elgart A, Erdös L, Schlein B, Yau H. Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. <i>Archive for Rational Mechanics and Analysis</i>. 2006;179(2):265-283. doi:<a href="https://doi.org/10.1007/s00205-005-0388-z">10.1007/s00205-005-0388-z</a>
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-005-0388-z
info:eu-repo/semantics/closedAccess