Effective ratner theorem for SL (2, R) ⋉R2 and gaps in √n modulo 1
Let G = SL(2, R) ⋉R2 and Γ = SL(2, Z) ⋉Z2. Building on recent work of Strömbergsson, we prove a rate of equidistribution for the orbits of a certain one-dimensional unipotent flow of Γ\G, which projects to a closed horocycle in the unit tangent bundle to the modular surface. We use this to answer a question of Elkies and McMullen by making effective the convergence of the gap distribution of √n mod 1.
94
1
61 - 84
61 - 84
John Wiley and Sons Ltd