TY - JOUR AB - T-type calcium channels play a pivotal role in regulating neural membrane excitability in the nervous system. However, the precise subcellular distributions of T-type channel subunits and their implication for membrane excitability are not well understood. Here we investigated the subcellular distribution of the α1G subunit of the calcium channel which is expressed highly in the mouse dorsal lateral geniculate nucleus (dLGN). Light microscopic analysis demonstrated that dLGN exhibits intense immunoperoxidase reactivity for the α1G subunit. Electron microscopic observation showed that the labeling was present in both the relay cells and interneurons and was found in the somatodendritic, but not axonal, domains of these cells. Most of the immunogold particles for the α1G subunit were either associated with the plasma membrane or the intracellular membranes. Reconstruction analysis of serial electron microscopic images revealed that the intensity of the intracellular labeling exhibited a gradient such that the labeling density was higher in the proximal dendrite and progressively decreased towards the distal dendrite. In contrast, the plasma membrane-associated particles were distributed with a uniform density over the somatodendritic surface of dLGN cells. The labeling density in the relay cell plasma membrane was about 3-fold higher than that of the interneurons. These results provide ultrastructural evidence for cell-type-specific expression levels and for uniform expression density of the α1G subunit over the plasma membrane of dLGN cells. AU - Parajuli, Laxmi K AU - Fukazawa, Yugo AU - Watanabe, Masahiko AU - Ryuichi Shigemoto ID - 2507 IS - 21 JF - Journal of Comparative Neurology TI - Subcellular distribution of α1G subunit of T-type calcium channel in the mouse dorsal lateral geniculate nucleus VL - 518 ER -