--- _id: '2474' abstract: - lang: eng text: 'Interneurons are critical for neuronal circuit function, but how their dendritic morphologies and membrane properties influence information flow within neuronal circuits is largely unknown. We studied the spatiotemporal profile of synaptic integration and short-term plasticity in dendrites of mature cerebellar stellate cells by combining two-photon guided electrical stimulation, glutamate uncaging, electron microscopy, and modeling. Synaptic activation within thin (0.4 μm) dendrites produced somatic responses that became smaller and slower with increasing distance from the soma, sublinear subthreshold input-output relationships, and a somatodendritic gradient of short-term plasticity. Unlike most studies showing that neurons employ active dendritic mechanisms, we found that passive cable properties of thin dendrites determine the sublinear integration and plasticity gradient, which both result from large dendritic depolarizations that reduce synaptic driving force. These integrative properties allow stellate cells to act as spatiotemporal filters of synaptic input patterns, thereby biasing their output in favor of sparse presynaptic activity. Stellate cells are critical sources of inhibition in the cerebellum, but how their dendrites integrate excitatory synaptic inputs is unknown. Abrahamsson et al. show that thin dendrites and passive membrane properties of SCs promote sublinear synaptic summation and distance-dependent short-term plasticity. ' author: - first_name: Therese full_name: Abrahamsson, Therese last_name: Abrahamsson - first_name: Laurence full_name: Cathala, Laurence last_name: Cathala - first_name: Ko full_name: Matsui, Ko last_name: Matsui - first_name: Ryuichi full_name: Ryuichi Shigemoto id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: David full_name: DiGregorio, David A last_name: Digregorio citation: ama: Abrahamsson T, Cathala L, Matsui K, Shigemoto R, Digregorio D. Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron. 2012;73(6):1159-1172. doi:10.1016/j.neuron.2012.01.027 apa: Abrahamsson, T., Cathala, L., Matsui, K., Shigemoto, R., & Digregorio, D. (2012). Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2012.01.027 chicago: Abrahamsson, Therese, Laurence Cathala, Ko Matsui, Ryuichi Shigemoto, and David Digregorio. “Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity.” Neuron. Elsevier, 2012. https://doi.org/10.1016/j.neuron.2012.01.027. ieee: T. Abrahamsson, L. Cathala, K. Matsui, R. Shigemoto, and D. Digregorio, “Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity,” Neuron, vol. 73, no. 6. Elsevier, pp. 1159–1172, 2012. ista: Abrahamsson T, Cathala L, Matsui K, Shigemoto R, Digregorio D. 2012. Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron. 73(6), 1159–1172. mla: Abrahamsson, Therese, et al. “Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity.” Neuron, vol. 73, no. 6, Elsevier, 2012, pp. 1159–72, doi:10.1016/j.neuron.2012.01.027. short: T. Abrahamsson, L. Cathala, K. Matsui, R. Shigemoto, D. Digregorio, Neuron 73 (2012) 1159–1172. date_created: 2018-12-11T11:57:52Z date_published: 2012-03-22T00:00:00Z date_updated: 2021-01-12T06:57:42Z day: '22' doi: 10.1016/j.neuron.2012.01.027 extern: 1 intvolume: ' 73' issue: '6' month: '03' page: 1159 - 1172 publication: Neuron publication_status: published publisher: Elsevier publist_id: '4427' quality_controlled: 0 status: public title: Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity type: journal_article volume: 73 year: '2012' ...