Inhomogeneous cubic congruences and rational points on del Pezzo surfaces

S. Baier, T.D. Browning, Journal Fur Die Reine Und Angewandte Mathematik (2013) 69–151.


Journal Article | Published
Author
Abstract
For given non-zero integers a, b, q we investigate the density of solutions (x; y) ∈ ℤ2 to the binary cubic congruence ax2 + by3 ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over ℚ.
Publishing Year
Date Published
2013-07-01
Journal Title
Journal fur die Reine und Angewandte Mathematik
Issue
680
Page
69 - 151
IST-REx-ID

Cite this

Baier S, Browning TD. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. 2013;(680):69-151. doi:10.1515/crelle.2012.039
Baier, S., & Browning, T. D. (2013). Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal Fur Die Reine Und Angewandte Mathematik, (680), 69–151. https://doi.org/10.1515/crelle.2012.039
Baier, Stephan, and Timothy D Browning. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik, no. 680 (2013): 69–151. https://doi.org/10.1515/crelle.2012.039.
S. Baier and T. D. Browning, “Inhomogeneous cubic congruences and rational points on del Pezzo surfaces,” Journal fur die Reine und Angewandte Mathematik, no. 680, pp. 69–151, 2013.
Baier S, Browning TD. 2013. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. (680), 69–151.
Baier, Stephan, and Timothy D. Browning. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik, no. 680, Walter de Gruyter, 2013, pp. 69–151, doi:10.1515/crelle.2012.039.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar