Defining the selectivity of processes along the auxin response chain: A study using auxin analogues

S. Simon, M. Kubeš, P. Baster, S. Robert, P. Dobrev, J. Friml, J. Petrášek, E. Zažímalová, New Phytologist 200 (2013) 1034–1048.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
; ; ; ; ; ; ;
Department
Abstract
The mode of action of auxin is based on its non-uniform distribution within tissues and organs. Despite the wide use of several auxin analogues in research and agriculture, little is known about the specificity of different auxin-related transport and signalling processes towards these compounds. Using seedlings of Arabidopsis thaliana and suspension-cultured cells of Nicotiana tabacum (BY-2), the physiological activity of several auxin analogues was investigated, together with their capacity to induce auxin-dependent gene expression, to inhibit endocytosis and to be transported across the plasma membrane. This study shows that the specificity criteria for different auxin-related processes vary widely. Notably, the special behaviour of some synthetic auxin analogues suggests that they might be useful tools in investigations of the molecular mechanism of auxin action. Thus, due to their differential stimulatory effects on DR5 expression, indole-3-propionic (IPA) and 2,4,5-trichlorophenoxy acetic (2,4,5-T) acids can serve in studies of TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALLING F-BOX (TIR1/AFB)-mediated auxin signalling, and 5-fluoroindole-3-acetic acid (5-F-IAA) can help to discriminate between transcriptional and non-transcriptional pathways of auxin signalling. The results demonstrate that the major determinants for the auxin-like physiological potential of a particular compound are very complex and involve its chemical and metabolic stability, its ability to distribute in tissues in a polar manner and its activity towards auxin signalling machinery.
Publishing Year
Date Published
2013-08-05
Journal Title
New Phytologist
Volume
200
Issue
4
Page
1034 - 1048
IST-REx-ID

Cite this

Simon S, Kubeš M, Baster P, et al. Defining the selectivity of processes along the auxin response chain: A study using auxin analogues. New Phytologist. 2013;200(4):1034-1048. doi:10.1111/nph.12437
Simon, S., Kubeš, M., Baster, P., Robert, S., Dobrev, P., Friml, J., … Zažímalová, E. (2013). Defining the selectivity of processes along the auxin response chain: A study using auxin analogues. New Phytologist, 200(4), 1034–1048. https://doi.org/10.1111/nph.12437
Simon, Sibu, Martin Kubeš, Pawel Baster, Stéphanie Robert, Petre Dobrev, Jirí Friml, Jan Petrášek, and Eva Zažímalová. “Defining the Selectivity of Processes along the Auxin Response Chain: A Study Using Auxin Analogues.” New Phytologist 200, no. 4 (2013): 1034–48. https://doi.org/10.1111/nph.12437.
S. Simon et al., “Defining the selectivity of processes along the auxin response chain: A study using auxin analogues,” New Phytologist, vol. 200, no. 4, pp. 1034–1048, 2013.
Simon S, Kubeš M, Baster P, Robert S, Dobrev P, Friml J, Petrášek J, Zažímalová E. 2013. Defining the selectivity of processes along the auxin response chain: A study using auxin analogues. New Phytologist. 200(4), 1034–1048.
Simon, Sibu, et al. “Defining the Selectivity of Processes along the Auxin Response Chain: A Study Using Auxin Analogues.” New Phytologist, vol. 200, no. 4, Wiley-Blackwell, 2013, pp. 1034–48, doi:10.1111/nph.12437.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar