{"author":[{"last_name":"Frank","first_name":"Rupert","full_name":"Frank, Rupert L"},{"full_name":"Hainzl, Christian","first_name":"Christian","last_name":"Hainzl"},{"full_name":"Robert Seiringer","id":"4AFD0470-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-6781-0521","last_name":"Seiringer","first_name":"Robert"},{"first_name":"Jan","last_name":"Solovej","full_name":"Solovej, Jan P"}],"date_created":"2018-12-11T11:57:25Z","publication":"Journal of the American Mathematical Society","date_updated":"2021-01-12T06:57:13Z","month":"01","_id":"2395","page":"667 - 713","quality_controlled":0,"title":"Microscopic derivation of Ginzburg-Landau theory","day":"01","volume":25,"intvolume":" 25","citation":{"ieee":"R. Frank, C. Hainzl, R. Seiringer, and J. Solovej, “Microscopic derivation of Ginzburg-Landau theory,” *Journal of the American Mathematical Society*, vol. 25, no. 3. American Mathematical Society, pp. 667–713, 2012.","short":"R. Frank, C. Hainzl, R. Seiringer, J. Solovej, Journal of the American Mathematical Society 25 (2012) 667–713.","chicago":"Frank, Rupert, Christian Hainzl, Robert Seiringer, and Jan Solovej. “Microscopic Derivation of Ginzburg-Landau Theory.” *Journal of the American Mathematical Society*. American Mathematical Society, 2012. https://doi.org/10.1090/S0894-0347-2012-00735-8.","mla":"Frank, Rupert, et al. “Microscopic Derivation of Ginzburg-Landau Theory.” *Journal of the American Mathematical Society*, vol. 25, no. 3, American Mathematical Society, 2012, pp. 667–713, doi:10.1090/S0894-0347-2012-00735-8.","apa":"Frank, R., Hainzl, C., Seiringer, R., & Solovej, J. (2012). Microscopic derivation of Ginzburg-Landau theory. *Journal of the American Mathematical Society*. American Mathematical Society. https://doi.org/10.1090/S0894-0347-2012-00735-8","ama":"Frank R, Hainzl C, Seiringer R, Solovej J. Microscopic derivation of Ginzburg-Landau theory. *Journal of the American Mathematical Society*. 2012;25(3):667-713. doi:10.1090/S0894-0347-2012-00735-8","ista":"Frank R, Hainzl C, Seiringer R, Solovej J. 2012. Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society. 25(3), 667–713."},"status":"public","extern":1,"oa":1,"type":"journal_article","publication_status":"published","publist_id":"4531","date_published":"2012-01-01T00:00:00Z","issue":"3","year":"2012","main_file_link":[{"url":"http://arxiv.org/abs/1102.4001","open_access":"1"}],"publisher":"American Mathematical Society","abstract":[{"lang":"eng","text":"We give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical in nature, and semiclassical analysis, with minimal regularity assumptions, plays an important part in our proof. "}],"doi":"10.1090/S0894-0347-2012-00735-8"}