Manin's conjecture for quartic Del Pezzo surfaces with a conic fibration

R. De La Bretèche, T.D. Browning, Duke Mathematical Journal 160 (2011) 1–69.

Download
No fulltext has been uploaded. References only!

Journal Article | Published
Author
;
Abstract
An asymptotic formula is established for the number of Q-rational points of bounded height on a nonsingular quartic Del Pezzo surface with a conic bundle structure.
Publishing Year
Date Published
2011-09-27
Journal Title
Duke Mathematical Journal
Acknowledgement
EP/E053262/1 Engineering and Physical Sciences Research Council
Volume
160
Issue
1
Page
1 - 69
IST-REx-ID

Cite this

De La Bretèche R, Browning TD. Manin’s conjecture for quartic Del Pezzo surfaces with a conic fibration. Duke Mathematical Journal. 2011;160(1):1-69. doi:10.1215/00127094-1443466
De La Bretèche, R., & Browning, T. D. (2011). Manin’s conjecture for quartic Del Pezzo surfaces with a conic fibration. Duke Mathematical Journal, 160(1), 1–69. https://doi.org/10.1215/00127094-1443466
De La Bretèche, Régis, and Timothy D Browning. “Manin’s Conjecture for Quartic Del Pezzo Surfaces with a Conic Fibration.” Duke Mathematical Journal 160, no. 1 (2011): 1–69. https://doi.org/10.1215/00127094-1443466.
R. De La Bretèche and T. D. Browning, “Manin’s conjecture for quartic Del Pezzo surfaces with a conic fibration,” Duke Mathematical Journal, vol. 160, no. 1, pp. 1–69, 2011.
De La Bretèche R, Browning TD. 2011. Manin’s conjecture for quartic Del Pezzo surfaces with a conic fibration. Duke Mathematical Journal. 160(1), 1–69.
De La Bretèche, Régis, and Timothy D. Browning. “Manin’s Conjecture for Quartic Del Pezzo Surfaces with a Conic Fibration.” Duke Mathematical Journal, vol. 160, no. 1, Duke University Press, 2011, pp. 1–69, doi:10.1215/00127094-1443466.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar