TY - JOUR
AB - This paper contains a proof of the Manin conjecture for the singular cubic surface S ⊂ P3 that is defined by the equation x1 x22 + x2 x02 + x33 = 0. In fact if U ⊂ S is the Zariski open subset obtained by deleting the unique line from S, and H is the usual exponential height on P3 (Q), then the height zeta function ∑x ∈ U (Q) H (x)- s is analytically continued to the half-plane R e (s) > 9 / 10.
AU - De La Bretèche, Régis
AU - Browning, Timothy D
AU - Derenthal, Ulrich
ID - 219
IS - 1
JF - Annales Scientifiques de l'Ecole Normale Superieure
TI - On Manin's conjecture for a certain singular cubic surface
VL - 40
ER -