The density of rational points on a certain singular cubic surface

T.D. Browning, Journal of Number Theory 119 (2005) 242–283.

Download
No fulltext has been uploaded. References only!

Journal Article | Published
Abstract
We show that the number of nontrivial rational points of height at most B, which lie on the cubic surface x1 x2 x3 = x4 (x1 + x2 + x3)2, has order of magnitude B (log B)6. This agrees with Manin's conjecture.
Publishing Year
Date Published
2005-12-27
Journal Title
Journal of Number Theory
Acknowledgement
EPSRC GR/R93155/01
Volume
119
Issue
2
Page
242 - 283
IST-REx-ID

Cite this

Browning TD. The density of rational points on a certain singular cubic surface. Journal of Number Theory. 2005;119(2):242-283. doi:10.1016/j.jnt.2005.11.007
Browning, T. D. (2005). The density of rational points on a certain singular cubic surface. Journal of Number Theory, 119(2), 242–283. https://doi.org/10.1016/j.jnt.2005.11.007
Browning, Timothy D. “The Density of Rational Points on a Certain Singular Cubic Surface.” Journal of Number Theory 119, no. 2 (2005): 242–83. https://doi.org/10.1016/j.jnt.2005.11.007.
T. D. Browning, “The density of rational points on a certain singular cubic surface,” Journal of Number Theory, vol. 119, no. 2, pp. 242–283, 2005.
Browning TD. 2005. The density of rational points on a certain singular cubic surface. Journal of Number Theory. 119(2), 242–283.
Browning, Timothy D. “The Density of Rational Points on a Certain Singular Cubic Surface.” Journal of Number Theory, vol. 119, no. 2, Elsevier, 2005, pp. 242–83, doi:10.1016/j.jnt.2005.11.007.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar