A Clark-Ocone formula in UMD Banach spaces
van Neerven, Jan M
Jan Maas
Let H be a separable real Hubert space and let double struck F sign = (ℱt)t∈[0,T] be the augmented filtration generated by an H-cylindrical Brownian motion (WH(t))t∈[0,T] on a probability space (Ω, ℱ ℙ). We prove that if E is a UMD Banach space, 1 ≤ p < ∞, and F ∈ double struck D sign1,p(Ω E) is ℱT-measurable, then F = double struck E sign(F) + ∫0T Pdouble struck F sign(DF) dW H, where D is the Malliavin derivative of F and P double struck F sign is the projection onto the F-adapted elements in a suitable Banach space of Lp-stochastically integrable ℒ(H, E)-valued processes.
Institute of Mathematical Statistics
2008
info:eu-repo/semantics/article
doc-type:article
text
http://purl.org/coar/resource_type/c_6501
https://research-explorer.app.ist.ac.at/record/2121
Van Neerven J, Maas J. A Clark-Ocone formula in UMD Banach spaces. <i>Electronic Communications in Probability</i>. 2008;13:151-164.
info:eu-repo/semantics/openAccess