TY - JOUR
AB - Let (E, H, μ) be an abstract Wiener space and let DV : = V D, where D denotes the Malliavin derivative and V is a closed and densely defined operator from H into another Hilbert space under(H, {combining low line}). Given a bounded operator B on under(H, {combining low line}), coercive on the range over(R (V), -), we consider the operators A : = V* B V in H and under(A, {combining low line}) : = V V* B in under(H, {combining low line}), as well as the realisations of the operators L : = DV* B DV and under(L, {combining low line}) : = DV DV* B in Lp (E, μ) and Lp (E, μ ; under(H, {combining low line})) respectively, where 1 < p < ∞. Our main result asserts that the following four assertions are equivalent: (1)D (sqrt(L)) = D (DV) with {norm of matrix} sqrt(L) f {norm of matrix}p {minus tilde} {norm of matrix} DV f {norm of matrix}p for f ∈ D (sqrt(L));(2)under(L, {combining low line}) admits a bounded H∞-functional calculus on over(R (DV), -);(3)D (sqrt(A)) = D (V) with {norm of matrix} sqrt(A) h {norm of matrix} {minus tilde} {norm of matrix} V h {norm of matrix} for h ∈ D (sqrt(A));(4)under(A, {combining low line}) admits a bounded H∞-functional calculus on over(R (V), -). Moreover, if these conditions are satisfied, then D (L) = D (DV2) ∩ D (DA). The equivalence (1)-(4) is a non-symmetric generalisation of the classical Meyer inequalities of Malliavin calculus (where under(H, {combining low line}) = H, V = I, B = frac(1, 2) I). A one-sided version of (1)-(4), giving Lp-boundedness of the Riesz transform DV / sqrt(L) in terms of a square function estimate, is also obtained. As an application let -A generate an analytic C0-contraction semigroup on a Hilbert space H and let -L be the Lp-realisation of the generator of its second quantisation. Our results imply that two-sided bounds for the Riesz transform of L are equivalent with the Kato square root property for A. The boundedness of the Riesz transform is used to obtain an Lp-domain characterisation for the operator L.
AU - Jan Maas
AU - van Neerven, Jan M
ID - 2119
IS - 8
JF - Journal of Functional Analysis
TI - Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces
VL - 257
ER -