Sphere packing with limited overlap

M. Iglesias Ham, M. Kerber, C. Uhler, in:, Unknown, 2014, pp. 155–161.

Conference Paper | Published | English
Abstract
The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice.
Publishing Year
Date Published
2014-01-01
Acknowledgement
We thank Herbert Edelsbrunner for his valuable discussions and ideas on the topic of this paper. The second author has been supported by the Max Planck Center for Visual Computing and Communication
Page
155 - 161
Conference
CCCG: Canadian Conference on Computational Geometry
Conference Location
Halifax, Canada
Conference Date
2014-08-11 – 2014-08-13
IST-REx-ID

Cite this

Iglesias Ham M, Kerber M, Uhler C. Sphere packing with limited overlap. In: Unknown; 2014:155-161.
Iglesias Ham, M., Kerber, M., & Uhler, C. (2014). Sphere packing with limited overlap (pp. 155–161). Presented at the CCCG: Canadian Conference on Computational Geometry, Halifax, Canada: Unknown.
Iglesias Ham, Mabel, Michael Kerber, and Caroline Uhler. “Sphere Packing with Limited Overlap,” 155–61. Unknown, 2014.
M. Iglesias Ham, M. Kerber, and C. Uhler, “Sphere packing with limited overlap,” presented at the CCCG: Canadian Conference on Computational Geometry, Halifax, Canada, 2014, pp. 155–161.
Iglesias Ham M, Kerber M, Uhler C. 2014. Sphere packing with limited overlap. CCCG: Canadian Conference on Computational Geometry 155–161.
Iglesias Ham, Mabel, et al. Sphere Packing with Limited Overlap. Unknown, 2014, pp. 155–61.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar