Formation of stripes and slabs near the ferromagnetic transition
Giuliani, Alessandro
Lieb, Élliott
Seiringer, Robert
We consider Ising models in d = 2 and d = 3 dimensions with nearest neighbor ferromagnetic and long-range antiferromagnetic interactions, the latter decaying as (distance)-p, p > 2d, at large distances. If the strength J of the ferromagnetic interaction is larger than a critical value J c, then the ground state is homogeneous. It has been conjectured that when J is smaller than but close to J c, the ground state is periodic and striped, with stripes of constant width h = h(J), and h → ∞ as J → Jc -. (In d = 3 stripes mean slabs, not columns.) Here we rigorously prove that, if we normalize the energy in such a way that the energy of the homogeneous state is zero, then the ratio e 0(J)/e S(J) tends to 1 as J → Jc -, with e S(J) being the energy per site of the optimal periodic striped/slabbed state and e 0(J) the actual ground state energy per site of the system. Our proof comes with explicit bounds on the difference e 0(J)-e S(J) at small but positive J c-J, and also shows that in this parameter range the ground state is striped/slabbed in a certain sense: namely, if one looks at a randomly chosen window, of suitable size ℓ (very large compared to the optimal stripe size h(J)), one finds a striped/slabbed state with high probability.
Springer
2014
info:eu-repo/semantics/article
doc-type:article
text
https://research-explorer.app.ist.ac.at/record/1935
Giuliani A, Lieb É, Seiringer R. Formation of stripes and slabs near the ferromagnetic transition. <i>Communications in Mathematical Physics</i>. 2014;331(1):333-350. doi:<a href="https://doi.org/10.1007/s00220-014-1923-2">10.1007/s00220-014-1923-2</a>
eng
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-014-1923-2
info:eu-repo/semantics/openAccess