Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates

J. Hatakeyama, Y. Wakamatsu, A. Nagafuchi, R. Kageyama, R. Shigemoto, K. Shimamura, Development 141 (2014) 1671–1682.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
; ; ; ; ;
Department
Abstract
The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors.
Publishing Year
Date Published
2014-04-01
Journal Title
Development
Volume
141
Issue
8
Page
1671 - 1682
IST-REx-ID

Cite this

Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 2014;141(8):1671-1682. doi:10.1242/dev.102988
Hatakeyama, J., Wakamatsu, Y., Nagafuchi, A., Kageyama, R., Shigemoto, R., & Shimamura, K. (2014). Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development, 141(8), 1671–1682. https://doi.org/10.1242/dev.102988
Hatakeyama, Jun, Yoshio Wakamatsu, Akira Nagafuchi, Ryoichiro Kageyama, Ryuichi Shigemoto, and Kenji Shimamura. “Cadherin-Based Adhesions in the Apical Endfoot Are Required for Active Notch Signaling to Control Neurogenesis in Vertebrates.” Development 141, no. 8 (2014): 1671–82. https://doi.org/10.1242/dev.102988.
J. Hatakeyama, Y. Wakamatsu, A. Nagafuchi, R. Kageyama, R. Shigemoto, and K. Shimamura, “Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates,” Development, vol. 141, no. 8, pp. 1671–1682, 2014.
Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. 2014. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 141(8), 1671–1682.
Hatakeyama, Jun, et al. “Cadherin-Based Adhesions in the Apical Endfoot Are Required for Active Notch Signaling to Control Neurogenesis in Vertebrates.” Development, vol. 141, no. 8, Company of Biologists, 2014, pp. 1671–82, doi:10.1242/dev.102988.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar