@inproceedings{1903,
abstract = {We consider two-player zero-sum partial-observation stochastic games on graphs. Based on the information available to the players these games can be classified as follows: (a) general partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) perfect-observation (both players have complete view of the game). The one-sided partial-observation games subsumes the important special case of one-player partial-observation stochastic games (or partial-observation Markov decision processes (POMDPs)). Based on the randomization available for the strategies, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization. We consider all these classes of games with reachability, and parity objectives that can express all ω-regular objectives. The analysis problems are classified into the qualitative analysis that asks for the existence of a strategy that ensures the objective with probability 1; and the quantitative analysis that asks for the existence of a strategy that ensures the objective with probability at least λ (0,1). In this talk we will cover a wide range of results: for perfect-observation games; for POMDPs; for one-sided partial-observation games; and for general partial-observation games.},
author = {Chatterjee, Krishnendu},
location = {Budapest, Hungary},
number = {PART 1},
pages = {1 -- 4},
publisher = {Springer},
title = {{Partial-observation stochastic reachability and parity games}},
doi = {10.1007/978-3-662-44522-8_1},
volume = {8634},
year = {2014},
}